

M Resort Spa Casino

Tom Chirdon

Faculty Advisor: William P. Bahnfleth Spring 2009

Presentation Outline

- Project Background
- Existing Mechanical Summary
- Design Objectives
- Alternative Description
- Energy Analysis
- Emissions Analysis
- Life Cycle Cost
- Acoustical Breadth
- Electrical Breadth
- Final Recommendations

M Resort Spa Casino

Project Background

Project Cost : \$1 Billion

Ground Breaking: Spring 2007

Opened: March 1, 2009

Owner: Marnell Corrao Associates

Location: Henderson Nevada, intersection of Las Vegas Boulevard and St. Rose Parkway

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

tom chirdon

M Resort Spa Casino

Project Background

Low Rise: 500,000 ft² includes spa, casino, restaurants kitchens, meeting rooms, ballroom, and offices

High Rise: includes 440 guest suites and lofts, along with a restaurant atop the tower

- Project Background
- Existing Mechanical Summary
- Design Objectives
- Alternative Description
- Energy Analysis

Presentation Outline

- Emissions Analysis
- Life Cycle Cost
- Acoustical Breadth
- Electrical Breadth
- Final Recommendations

5pring 2009

M Resort Spa Casino

tom chirdon

Condenser Water Loop

Evaporator Loop

tom chirdon

Existing Mechanical Summary

Cooling

Centrifugal Chiller – Refrigerant 123

Capacity - 3900 tons

Serves – AHU and FCU

Condenser – EWT – 85F LWT – 97F

Evaporator – EWT 58F LWT 42F

Heat Exchanger allows for free cooling with cooling tower water

M Resort Spa Casino

- Project Background
- Existing Mechanical Summary
- Design Objectives
- Alternative Description
- Energy Analysis

Presentation Outline

- Emissions Analysis
- Life Cycle Cost
- Acoustical Breadth
- Electrical Breadth
- Final Recommendations

Steam Water Loop

tom chirdon

Heating Hot Water Loop

Existing Mechanical Summary

Heating Hot Water

Natural Gas Boilers

Capacity – 46,800 MBH

Serves – AHU, Domestic water Heat Exchangers and Pool Heat Exchangers

<u>Steam</u>

Capacity - 6,400 lb/hr

Serves – kitchen steam equipment

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

Existing Mechanical Summary

28 Air Handing Units

Located on low rise and tower roofs
Utilize Economizers where possible
Casino Spaces are 100% Outdoor Air
Incorporate Smoke Control

Fan Coil Units

Located in guest areas

Two pipe vertical stack configuration

Integrated Wall Mullion brings in OA

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

5pring 2009

M Resort Spa Casino

tom chirdon

Design Objectives

Central Plant Analysis

Study combined heating, cooling, and power system

-Life Cycle Cost Comparison

Utility costs and First Costs

-Emission Comparison

Thought – Electricity is expensive in Las Vegas area and with the Hoover Dam water level Dropping , it could become more expensive in the future.

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

5pring 2009

tom chirdon

Typical July Day Demand

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

tom chirdon

Alternative Description

Base Model Electricity Consumption

M Resort Spa Casino

- Project Background
- Existing Mechanical Summary
- Design Objectives
- Alternative Description
- Energy Analysis

Presentation Outline

- Emissions Analysis
- Life Cycle Cost
- Acoustical Breadth
- Electrical Breadth
- Final Recommendations

Generating Equipment – Solar Gas Turbines

5700kW and 1200kW

38.7 thousand lb/hr steam

78.8 MMBtu/hr heat input

tom chirdon

Alternative Description

Heat Usage

-Heating Hot Water

-Steam equipment

-Absorption Cooling

Thermo-chemical process

Water lithium Bromide

M Resort Spa Casino

• Alternative Description

• Energy Analysis

Presentation Outline

• Electrical Breadth

• Final Recommendations

• Project Background

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

Electric Utility Rates (Nevada Power Company) Rate Structure LGS-3 Service Charge Per Consumption Demand Charge month Charge Per kWh Per kW Summer On-Peak 1PM-7PM \$0.10034 \$8.47 10AM-1PM, Summer Mid-Peak \$0.08649 \$0.63 \$167.70+ 7PM-10PM \$0.00627/kWh Summer Off Peak 10PM-10AM \$0.06281 \$0.50 Vinter (Octobe \$0.06281 All Other Periods Natural Gas Utility Rates (Southwest Gas Corporation) Rate Structure SG-5L Consumption Service Charge Per Demand Charge Period Time Charge Per month Per therm therm All Periods All Times \$150.00 \$1.1310 \$0.00

Energy Analysis

Utility Rates taken from Nevada Power, and Southwest Gas.

Spark Gap – Difference in cost between electricity and natural gas

Spark Gap										
	Electricity	/		Spark Gap						
Usage	(\$/kWh)	\$/10 ⁶ btu	Usage	\$/therm	\$/10 ⁶ btu	\$				
Peak	0.10661	31.25	Peak	1.131	11.31	19.94				

Presentation Outline

- Project Background
- Existing Mechanical Summary
- Design Objectives
- Alternative Description
- Energy Analysis
- Emissions Analysis
- Life Cycle Cost
- Acoustical Breadth
- Electrical Breadth
- Final Recommendations

tom chirdon M Resort Spa Casino

Energy Analysis

Generating to Electricity Consumption

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

Energy Analysis

Generating to meet heating demands

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

Due to the receding water in the Hoover Dam emissions data from New Mexico.

Generating to heating

64,620 Pine Trees or 387,720 Maple Trees

Generating to Electrical

tom chirdon

91,020 Pine Trees or 546,120 Maple Trees

Emissions Analysis

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

Life Cycle Costs

	Existing System	Redesign Cogen	Redesign Cogen	
	Existing system	meeting Heating	meeting Electrical	
Unchanged First Costs	\$1,431,254	\$1,431,254	\$1,431,254	
Central Plant First Costs	\$1,624,000	\$1,624,000	\$1,624,000	
Low Rise HVAC Cost	\$20,850,428	\$20,850,428	\$20,850,428	
High Rise HVAC Cost	\$3,819,232	\$3,819,232	\$3,819,232	
Chiller First Cost	\$2,220,000	\$2,008,500	\$2,008,500	
Generator First Cost	\$0.00	\$4,500,000	\$4,500,000	
Other Generator Costs	\$0.00	\$460,000	\$460,000	
TOTAL FIRST COSTS	\$29,944,914	\$34,693,414	\$34,693,414	
Natural Gas Cost	\$499,029	\$3,493,267	\$6,496,278	
Electrical Utility Cost	\$3,841,339	\$1,161,076	\$0.00	
TOTAL UTILITY COSTS	\$4,340,368	\$4,654,344	\$6,496,278	
Discount Rate	0.05	0.05	0.05	
Life Cycle Length	20	20	20	
0 11/1 (11/17) 0 1	\$ 86,807,352	\$ 93,086,875	\$ 129,925,568	
Present Value of Utility Costs	2 00,007,332			

Presentation Outline

- Project Background
- Existing Mechanical Summary
- Design Objectives
- Alternative Description
- Energy Analysis
- Emissions Analysis
- Life Cycle Cost
- Acoustical Breadth
- Electrical Breadth
- Final Recommendations

5pring 2009

M Resort Spa Casino

Overall NC of 48dB and limits of 45-55dB

Acoustical Breadth

	Octave Band Center Frequency, Hz									
Source	31.5	63	125	250	500	1000	2000	4000	8000	dBA
Inlet Air	76	82	88	89	90	92	95	120	112	121
Inlet Air Silencer	0	-1	-2	-3	-15	-25	-48	-55	-37	
Net Inlet Air	76	81	86	86	75	67	47	65	75	
Exhaust Air	88	91	88	91	95	87	80	72	64	94
Exhaust Air Silencer	-3	-5	-11	-19	-22	-28	-26	-17	-14	
Net Exhaust Air	85	86	77	72	73	59	54	55	50	
Oil Cooler	63	70	67	60	55	52	48	44	39	58
Taurus 60	72	65	66	67	68	64	64	60	53	70
Multiple turbines	4	4	4	4	4	4	4	4	4	
Sum of Sources	86	87	87	86	78	69	65	67	75	
A-weighted correction	-39	-26	-16	-9	-3	0	1	1	-1	
A-weighted sound level	47	61	71	77	75	69	66	68	74	81

Sound levels calculated for 50ft

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

New Panel Board Loads for Absorption Chillers

Panel HPSA-4

tom chirdon

	LOAD (VA)		Brk.	HPAS4		LOAD (VV		D (VA)				
Description	A		c	Trip (A)	Oct.#		A	8 c		Brk. Trip (A)	Description	
ABS Chiller-1	11265			175/3	1	2	11265			175/3	ABS Chiller-FUT	
ABS Chiller-1		11265			٩	4		11265			ARS Chiller-PUT	
ASS Chiller-1			11265		u	6			11265		ARS Chiller-FUT	
ABS Chiller-2	11265			175/3	7	2	11265			175/3	ARS Chiller-FUT	
ABS Chiller-2		11265			9	10		11265			ARS Chiller-FUT	
ABS Chiller-2			11265		11	12			11265		ARS Chiller-FUT	
AGS Chiller-3	11265			175/3	13	14	11265			175/3	ARS Chiller-FUT	
ABS Chiller-3		11265			15	16		11265			ASS Chiller-RUT	
AGS Chiller-3			11265		17	18			11265		ARS Chiller-FUT	
Spare				20	19	20				20	Spare	
Spare				20	21	22				20	Spare	
Spare				20	22	24				20	Spare	
Spare				20	25	26				20	Spare	
Spare				20	27	28				20	Spare	
Spare				20	29	20				20	Spare	
Spare				20	31	32				20	Spare	
Spare				20	22	24				20	Spare	
Spare				20	25	26				20	Spare	
Spare				20	27	22				20	Spare	
Spare				20	29	40				20	Spare	
Spare				20	41	42				20	Spare	
	33795	33795	33795				33795	33795	33795			
Total Load on Phase A: 67590 Total Load on Phase B: 67590 Total Load on Phase C: 67590						-	tal Load n Panet		202.8 254.0	RVA Des	mand Demand	

Hectrical Breadth

Purpose: To provide service to the new equipment in a cost effective manner.

Differencing chiller loads allowed different electrical connections

Panel Board Equipment Sizing										
Equipment	Full Load Current	Wire Size	Conduit Size	Breaker Size						
Absorption Chiller -1	65A	#4 AWG	1"	175A						
Absorption Chiller -2	65A	#4 AWG	1"	175A						
Absorption Chiller -3	65A	#4 AWG	1"	175A						

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

Hectrical Breadth

Connections changed and with the new panel the switchgear also must change

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

• Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

Final Recommendations

Based on the design objective and the results from the analysis it is a recommendation of this report that the current electrical centrifugal chillers remain. Until there is more incentive from carbon credits or if electricity prices rise the design alternative does not make economical sense.

Presentation Outline

- Project Background
- Existing Mechanical Summary
- Design Objectives
- Alternative Description
- Energy Analysis
- Emissions Analysis
- Life Cycle Cost
- Acoustical Breadth
- Electrical Breadth
- Final Recommendations

tom chirdon

M Resort Spa Casino

Acknowledgements

Marnell Corrao Associates for their assistance and cooperation throughout this project

Mike Hallenbeck, Marc Crawford, Jessica Lucas, and Ben Johnson, from Southland Industries

Dr. William Bahnfleth and Dr. James Friehaut

Tim Robinson of Carrier Corporation and Bernie Pfeifer of Solar Turbines

My mother, Karen, my father, William, Brother Dan, Sister Ann, Brother in law Brady

Scott Earley, Scott Garley, David Miller, Dominic Manno, Chris Conrad, and all others not mentioned here especially L.C.

M Resort Spa Casino

• Project Background

• Existing Mechanical Summary

Design Objectives

• Alternative Description

• Energy Analysis

Presentation Outline

• Emissions Analysis

• Life Cycle Cost

• Acoustical Breadth

• Electrical Breadth

• Final Recommendations

Questions

M Resort Spa Casino

